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Abstract—A model is developed for the time evolution of the stresses and displacements around a
fiber break in a simple plunur composite loaded in tension. The composite consists of parallel. elastic
fibers in a matrix that creeps according to a nonlinear, power law with memory. and which has
exponents for both time and shear stress. Cases of three- and five-fiber composites are analysed
using a shear-lag approximation which yields self-similar, closed-form solutions for fiber stresses,
strains and displacements and for matrix shear stresses near the break. The exponents for the self-
similar growth of the deformation zone, in both time and composite stress, are different from those
of the matrix constitutive liw. The length of the deformation zone is found typically to be finite at
any given time in contrast to the case where the matrix is assumed to be lincurly viscoelastic.
Asymptotic results are obtained for the case of a high creep exponent in stress. These asymptotic
results are similar to those for a perfectly plastic matrix material.

I, INTRODUCTION

In recent statistical models for the creep rupture of graphite fiber/epoxy composites, time
dependent matrix deformation and interfuce debonding have been implicated as key mech-
anisms in the failure process (Phoenix ¢t al., 1988 ; Otani ¢t al., 1991). An carly model of
micromechanical creep processes actually dates back to Lifshitz and Rotem (1970). Failure
in such unidirectional composites is generally a complex statistical process beginning with
the random failure of fibers at flaw sites, followed by overloading of neighboring fibers by
way of stress transfer through the matrix. Additional fibers fail leading to the growth of
clusters of breaks and instability. In creep rupture, failure is also driven by viscoclastic
creep in the polymer matrix near fiber breaks, which produces a widening overload profile
on fibers next to existing breaks.

A shear-lag model for the time evolution of overstress profiles near broken fibers was
developed recently by Lagoudas ef af. (1989) under the assumption that the matrix is lincarly
viscoclastic and follows a power law, creep compliance in shear, a common assumption for
polymers. Apart from the time dependence, their basic assumptions were those of the planar
modcl of Hedgepeth (1961) with none of the complications introduced by considering
normal stresses in the matrix or longitudinal yiclding and splitting (Goree and Gross, 1979),
or three-dimensional arrays (Hedgepeth and Van Dyke, 1967 ; Goree and Gross, 1980).

While the results of Lagoudas ef afl. (1989) provide valuable insight, the lincarity of
the matrix constitutive law in shear stress is not consistent with the deformation behavior
of many polymeric matrices in the highly constrained, microscopic region between fibers
near a break. Gulino er al. (1991) obscrved that a typical epoxy undergoes large-scale
yiclding and even slight strain softening up to strains of 30-40% before rapid strain
hardening and failing, in contrast to the stress-strain behavior in bulk, which appears
almost lincar up to brittle failure at a strain of 2-4%. This large-scale yielding was studied
cxtensively in thin films of a varicty of epoxics by Glad (1986). Strain hardening was the
result of crosslinking in the polymer network and can be delayed if the crosslink density is
reduced. If 4 power law in stress is fitted to such a stress-strain behavior up to the point of
strain hardening, one requires an exponent of 4-10 to achicve a reasonable fit.
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On the other hand. the authors are aware of no experimental studies of polymer creep
in such microscopic regions at these high shear stress levels. Nevertheless, one might
anticipate that a power law in time would still provide a useful model. though with exponents
that might be larger than tn the linear region. Thus we propose a nonlinear creep law, which
is a power law in both stress and time and which has a memory integral to accommodate
time variation and shear stresses in the polymer matrix. The model ignores the elastic
component of matrix deformation so that the results apply only for large deformations or
long times beyond the transient region. We give no justification for the model in terms of
molecular kinetics except that power-law forms have been justified by Phoenix and Tierney
(1983) in the case of the breakdown of fibers by chain scission, and a chain slippage version
for creep is plausible.

In the present work, we consider the shear-lag model used by Lagoudas er al. (1989)
but with a different constitutive law for the creep of the matrix as outlined above. We
consider planar composites involving three and five fibers of infinite length. In Section 2 we
describe the model in the case of three fibers. The middle fiber is assumed to be broken at
time zero and we give governing equations for determining the evolution of the stresses,
strains and displacements in the fiber as well as the matrix shear stresses. In Section 3 we
consider the special case where the exponent in time is unity. This restriction allows us to
obtain a solution in closed form. In Section 4 we present the numerical solution of the
general case where the exponent in time in the power law model is arbitrary. [n Section S
we extend the analysis to a composite with five fibers. Section 6 provides some conclusions
on the implications of the results.

2. DESCRIPTION OF THE MODEL WITH THREE FIBERS

Consider a planar arrangement of three fibers in a matrix as shown in Fig. 1, which
shows only the right half since the problem is symmetric about the vertical axis. The fibers
are parallel, infinitely long, equally spaced and linearly clastic. They are embedded in a
matrix material which ts nonlincar and creeps according to

P, ’ "
(,’,(f 0 _ Br(x, 1)""1[J t(x.s)"” d-\'J . (1

dt )

where y(x, #) is the matrix shear strain, t(x, r) is the matrix shear stress (assumed not to
change sign with time at fixed x) and B, m and n are positive material constants. (The
parameters m and n are dimensionless and B has dimensions of stress™™" - time™".) We
restrict our attention to the ranges 0 < n < | and m > [, which are believed to be those of

Fiber 1

Flber0,Eo = E

Fiber -1

Fig. 1. Physical configuration for the three-fiber problem. The center fiber is brokenat x = 0,1 = 0.
Only the right half is shown.
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practical interest. When subjected to constant shear stress r, a material of this form exhibits
a shear strain rate of

ool
5 = B )

or, shear strain as a function of time given by
y = Br™r". 3

Thus the basic power law exponents for creep are n (time) and mn (shear stress). The matrix
is assumed to have negligible tensile stiffness relative to that of the fibers, and thus offers
no resistance to extensional deformations.

The fibers, denoted 1, 0 and — 1 are of diameter D, cross-sectional area 4, and inter-
fiber spacing d. Thus the matrix on either side is taken to have width d, and thickness D.
The Young's modulus of Fiber 0 is £, = E, while that of Fibers | and —1 is
E,=E_, = E/¢, where ¢ is a parameter satisfying 0 €< ¢ < | and is used to simulate
different boundary conditions. For example, when ¢ =0, E, —» o0, Fibers | and — 1| are
infinitely stiff, so that they appear essentially as rigid walls to the center fiber and the
attached matrix. We refer to this as the single fiber problem. When ¢ = 1, the fibers are of
equal stiffness, whereas when ¢ = 0.5, Fiber 0 is half as stifT as each outside fiber.

Loads arc applied as follows : the respective fiber loads, P, and P, = P_, arc applied
at x = = o0, such that they initially generate a uniform strain e = Po/(4AE) = P,/(AE)) in
the material. The center fiber is suddenly broken at x = 0, 1 = 0. The force lost by the
broken fiber is transferred, through shear tractions in the matrix, to the two intact neighbors.
Duc to thc obvious symmetry, the displacements, strains and forces will be identical in
Fibers | and — 1. Thus, it is suflicient to restrict our attention to Fibers 0 and | throughout
the discussion.

Free body diagrams for segments of Fibers 0 and 1 are shown in Fig, 2. Using Hooke's
law, the force equilibrium equation for Fiber 0 is

D%vo(x, 1)

2Dt(x,t) = EA —-5;'2‘—‘“,

(4)

Fiber 0: Dt (x,0 dx

—
otz +— I — Poxo+ 0 o,
-

D t(x,0 dx

Fiber 1:

'] P1(x.t)

P S ] — > Pxd+—5 —dx

_—
D (x,0 dx

Fig. 2. Free body diagrams of segments of Fibers 0 and .
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and for Fiber | is
—Dr(x.y = 2 LA 5)
(b ol

where ¢,(x. 1) is the displacement in Fiber i. for i = 0. | and 7 is assumed to be constant
across the thickness of the matrix. The initial and boundary conditions for Fiber 0 are

: 0.0=0)=ex=""x
ty(x>0,t=0) =¢ex = .4E"'
Co(x— 0.1 20) =g,
Cox=0,t>0)=0, (6)
and for Fiber | are,
(x>0t =0) = ex,
e (y—=x,t20) =¢
P,+2P, b

v = = ——— =g =] 7
vy (x=0,1>0) SA(ETP) xl:l+2 (7)
Since the relation between stresses and fiber displacements, eqns (4) and (35), are

insensitive to the addition of a uniform strain ¢, a compression model 1s devised with
displacements, u,(x, 1), defined as

w(x, 1) =r(x,t)—ex, for (=0 land —1. (8)

Fiber 0 is taken as already broken at x = 0, and a compressive force P = A Ee is suddenly
applied at ¢ = 0 to the broken ends of Fiber 0, lcading to strain —¢ at that point for all
1 > 0. From egn (8), the solution for the tension problem can be recovered easily from the
solution to the compression version by the addition of ex to the fiber displacements, and ¢
to the fiber strains, The shear stresses for both problems are identical.

In the compression version, the boundary and initial conditions are

uy(x > 0,1 =0) =0,
Uy (x—+x,020)=0,

ty, (x =0,r>0)= —¢ (9
for Fiber 0, and

u{x>0,t=0)=0,

wuy (x—=x.t20)=0,

u, (x=0,t>0) = E.(,b.

(10)

for Fiber 1. Define

Ulx.t) = ug(x.t) —u (x.1). (1)
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In terms of U(x. 1) we have

cv(x. 0 _ 1 cU(x. 1)

= 12
Ct d (12)
for the shear strain rate in the matrix. From eqns (4), (5). (8) and (11) we obtain
EA ¢ U(x.0)
c = 3
T(x. 1) C+é)D o (13)

Combining eqas (1), (12) and (13). we obtain a single equation governing U. i.e.

6U EA mn N t . n— 1
—7 =‘[B"Iim] (U.u') [J‘O (Uu) d‘sjl . (14)

with the initial and boundary conditions:
U(x>0,t=0)=0,

Ulx—>0,020) =0,

Udx=0,t>0) = —4:|:l+(:l:jl. (195)

Note that the matrix in cach bay between two fibers couples the displacements in those
bounding fibers.

3. ANALYTIC RESULTS FOR THE THREE-FIBER PROBLEM
Self-similar transformation
Dimensional considerations in terms of dimensionless groups imply that the solution
for the fiber displacements has the form

U, 0)/xe(1+p/2) = g(n). (16)

where ¢ is a function of the dimensionless parameter

x
T PPN VS I7
1T AN )O3 *
where 2 and f8 are the dimensionless exponents
n n
g e e g = e 18
x mn+ 1 ind 4 mn— | (1)
and
EA "
= tn] 20 19
Q, = (dB) |:(2+¢)D] (19)

having dimensions that render n dimensionless.
Consider first the special case of n = | where the matrix constitutive law, eqn (1),
becomes memoryless. Substituting eqn (16) into eqn (14) gives

—an*g' (n) = [29'(n) +ng" (D)™ (20)
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Equation (20) can be solved in closed form (Mason, 1990), giving
g (m = —n"*[C—Mn]™, (20

where C is an integration constant and

l Em
x‘/tzml

m__l 1 f.m
=T 2
2m [m+l] 22)

Note that for m > |, M > 0 so that for n° > C/M. g’ () is complex so that no real solution
exists unless there exists a constant n,,,,, such that for all § > fp... g (1) = 0. This implies
the existence of a right moving boundary point beyond which all displacements and stresses
would be identically zero. Indeed, if we define 5, as

C {72
Hoax = [E}] . (23)

then g () = 0. If we further require g(n,..) = 0. then it can be verified that the boundary
conditions of eqn (15) and the governing eqn (14), can be satisfied if we require g(n) = 0
for all § > #n,,.,. These boundary conditions are replaced by :

_9'(’1 = ']max) = Ov
g (1= 1) =0, (24)

50 that
""hl‘
gln) = ~J~ g (3)ds
n

""h“
= f 27 C—~ M2 dz. (25)
7

Substituting eqn {25) into eqn (16), the initial condition U (x = 0,1 > 0) = —&(l +¢/2) in
eqn (15) is found, after some manipulations, to be equivalent to

. l
2m{i\/MC‘” "I{J (1—w?? dw} =1, (26)
0
which implies that
1 1 C{f+3/2} ¥
"mux = [ IEJB { }J ] (27)
JMimp /M= {B+1}

where I™ is the Gamma function and we have used the idéntity

‘ ) Lfr{y2ir{g+1}
L“‘"’ )ﬁd‘”=5[ T8+ 372) ]

From eqns (27) and (22) it is evident that 5., — | as m — 00, and #,, — 0 asm — | where
the material becomes linearly viscous. Let x,,, be the physical length of the loaded zone
corresponding to the value n = n.,,. From eqns (18) and (27), and incorporating the
definitions of «, f and @; we obtain
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m: (m+ 1Lim+
Xmax = 8("‘_')'("““(‘+¢/2)“'7("+”f|(M"'”[%] { ”[dBm(’n‘{"l)] ¢ b

m—1

l (m—-Litm+ D)
r{f'"‘z}
_w=mml . (28)

el

m—1

Equation (28) implies that, for sufficiently large m. the region where stresses and strains are
nonzero spreads out approximately proportionally to the applied strain and is very insen-
sitive to time.

The shear stress, t(x, ), in the matrix is found to be

- T/ 2N )
r(.v,!)=ﬂwi|:l_["]]. 29)
D/n TB+1] X Mmas

For convenience we define a nondimensional shear stress 7(1), where p = /R, as

_ f(.\'. ’)2D-v|n.lx
B AEe

2 TR (30)

= \/n rig+1}

()

Figure 3is a plot of €()) versus y for several values of m. Asm — 0, t(y) = L, for0 < y < |
(corresponding 1o 0 € 7 < #.,), and is zero clsewhere.
The strains can be computed using eqn (1), i.c.
Udx,t) = uy (x,t)—u, (x, 1)
= go(x, 1) ~&,(x.0), (31

where g,(x, 1) for i = 0, 1, are the individual fiber strains. The strains are also related through
global force equilibrium of the composite so that

A
Ty
1.2
1.0 9
]
0.819
1
0.8
0.4
| ——— maS
—_— m«10
0.2
—— m=30
0.0 - T T T
0.0 0.2 0.4 0.8 0.8 10y

Fig. 3. Plot of nondimensional shear stress profile () versus scaled distance y for n = 1 and several
values of m. Later in the text () i Muan " (3Mmas)-
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eilx.0) = — Se(x.0). (32)

Therefore,

Ux.t)

[l + {gjla.)(x. t)

- [% + l};.(.\-.z). (33)

From eqns (16) and (25). we obtain

2 rip+32 (! \
eo(v.t) = —¢ ﬁ ‘r.':*/":# J:’ - (I —w*) dw. 34

and
b 2 rip+32 ! .
() = e e s e | =) do. 35
ey(x ) fz\/n Cipeil Mm"( w ) do (33)
The fiber forces are related to the strains by
Po(x, 1) =4 [;'lil,(,\'. f) (3())
and
Al AE
Pinv1) = e ) = — R £y(x. ). (37)

¢ 2

It is useful to define nondimensional forms of the forces and strains. Let y = g/f... In
0 € ¢ < 1, define a nondimensional fiber force, P(v). by

. Po(x. 1) 2 Tip+3/2) [ .
D (o) e e = T M T | —-wH)! 3
POY="E Ju T+ (1=w?) do (%)

which may also be viewed as & nondimensional strain, £(1). From eqns (36) to (37) we
have

Py(x.1) = AEP(y). (39)
and
AE: .
P = =" B). (40)

The fiber strains may also be written in terms of the nondimensional force, P()). From
eqns (34), (35) and (38).

Ea(X. 1) = 6E(¥) = 6P (V) @1

and



Fig. 4. Plot of nondimensional tiber force £(y) versus scaled distance y for 7 = | and several values
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42)

A plot of P(y) is shown in Fig. 4 for various values of m. The fiber displacements can be
obtained by integrating the strains, i.c.

and

where

a/f
uox. 1) = 10" “[l + ‘f] Q’sl'nm[d(}'H ‘fd(O)],

/8
win = = S "[n + ‘f] Q3 nuclii () — (O],

2 Tip+32 '{J' - } i
a(y) -;/7; r{/!——i:l} J: ] (1 -w) dwpd:z.

Plots of 1i(») are shown in Fig. 5 for scveral valucs of m.

(43)

(44)

(45)

Limiting behavior as m-— o, As m grows large, eqns (27), (30), (38) and (45) imply
that no = L 7)) =1, P(») = (r~1) and a(y) = (y—1)%2. These limits are clearly
evident on Figs 3-5. Also. it is evident from egn (28) thatas m — x©
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dty)

0.0 0.1 0.2 0.3 04 0.5 06 0.7 08 09 1.0

Y

Fig. 5. Plot of nondimensional displacement 4(y) versus scaled distance y for n = 1 and several
vitlues of m. Later in the text 4(y) IS (. ™ "H” (3710,.).

EAe L
Xoax —* 5D for all finite 1. (46)

Note that 3 = /0. = X/Xmax and the fiber strains and forces tend towards

eo(x, 1) = e(y—1), 47)
El(x,l)—»—izés(y-l). (48)
Po(x, 1) = AEe(y— 1), 49)
and
AE
Pi(x.0) = = = (=), (50)

which of course only apply for 0 € y < 1, these quantities all being zero for y > 1. Also, as
m — cc, the fiber displacements tend towards

uo(x,z)~ez[1+§][£y——2—l—)i+§], (51)

and
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u(x.f—— ?s:[l + g] [; —-y]. (52)

Lastly the shear stress approaches
(x.0) = 1. (53)

Note that t(x. 1) — | is really a consequence of the assumed form of the matrix constitutive
law. If we let B = B’t; ™, thus yielding

G _ B’ (t/1y)", (54)

‘o

for n = I, then as m — 20, one anticipates that r — z,. Thus, behavior like that of a rigid,
perfectly plastic matrix material would occur in the compression problem given large
enough values of m.

Adaptation of results to tension version. The above results are easily adapted to the
tension version of the problem using eqn (8). The shear stresses are unchanged as given by
eqns (30), and ., and x,,, remain the same. The fiber strains arc simply those for the
compression problem with £ added. and the displacements are eqns (43) and (44) with ex
added.

As for limiting results where m — o0, the matrix shear stress is unchanged and for the
fiber strains simply add « to the right-hand sides of eqns (47) and (48). For the displacements,
simply add v to eqns (51) and (52).

4. NUMERICAL SOLUTION OF THE CASEn < 1

Compression version. The closed form solution for the special case of n = | indicates
the existence of x,,,, beyond which all displacements and stresses are identically zero. We
look for a solution having the same feature for the general case of n < 1. 1t turns out that
it is more convenient to define

Xt DH
Ui = S+ DH@) 55
n
where H is related to g of eqn (16) by
H(n) = ng(n), (56)

and n is still defined by eqn (17).
Following the same procedure as for n = [, the governing equation for H is found to
be [see Mason (1990)] :

1im
f’" _ H(l-n)rmn[z [[.I_,’H’]] S (57)

which must be supplemented by the boundary conditions:

H(n = Np,) =0,
H'(N = Nmu) =0,
H(n=0=-1 (58)
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Asin the case of n = 1, n,,, is an unknown which is determined by the initial condition.
Nmax €N be considered as an eigenvalue which is needed to satisfy the three conditions
imposed by eqn (58). The existence of n,,, implies that sufficiently far from the point of
loading on the end of the center fiber. all fibers experience equal displacements so that their
relative displacements and strains are identically zero. For the special case ¢ = 0. all fiber
displacements are identically zero at ..

Stresses, strains and displacements. From eqns (13) and (35). the shear stresses in the
matrix are

EdA  e(l+¢/2m

X)) = H
t(x.1) G5 eD . (n)
Eden ]
= E *\*H (']), X < Xpuxe (59)

independent of ¢, where x,,,. ts the length of the loaded or perturbed zone on the fibers,
which by eqn (17) can be defined in terms of #,,,, as

xmux = ,]maugl ‘I(l +¢/2)1”Q§’x' (60)

Note that tor all x > x,,,. all stress and strain guantitics are identically zero. For the fiber
strains, £o(x. 1) = wy, and e,(x. 1) = u, we see from egns (11) and (16) that

uo, = e(b+ /I () +uy,. (61)
The fiber strains are also related by the overall equilibrium of the composite. For the

compression version, there is no foree applied at v = 1 o0, Thus cquilibrium requires that
forall v 2 0 and all 1 > 0,

EA
EAu,, +2|: v‘b :lu,_x = 0. (62)

Solving egns (61) and (62) for u,, and u,  yiclds the strains

eg(x,0) = uy, = eH’ () (63)
and
e = o= O ,
eo(v, ) =0, = — 5 el (). (64)

The displacements in Fiber | are obtained by integrating eqn (64) with respect to x,
or equivalently, with respect to n with ¢ held fixed. This yields

)9 .
wy(x.1) =J {—- 7'e:II'(r/)}d.\'

= ﬁ' {- (ff:H'(:)}[n’ B+ ¢/2)*P Q%) d=

- {‘ Saenen +¢/2>“"Q§f’}{ﬂ(n)—H(0>}. (65)

Similarly, the displacement in Fiber 0 1s found to be
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ug(x.t) = {t:x(l+¢/2)£{—"(—’7—) —ge"”‘”(l +¢¥2)"’Q’;r’{H(q)—-H(0)}}

-

= 5V (1+ /2" Q3 (H(n) +($/2) H(0)}. (66)

Note that when the outside fibers are rigid (¢ = 0) the displacement w,(x.¢) of eqn (65)
reduces to zero. and the displacement of the center fiber reduces to

up(x, t) = e*?* "0 H(n). (67)

The fiber forces are given by Py(x.t) = EAdug, and P (x.t) = E,Au, and are found
to be

Po(x.t) = EAeH’ (n). (68)
and
Pi(x.0) = — %[%]ﬁ”’w)
= — 5;4121{'(']). (69)

Tension version, The solution to the problem of three fibers in tension at strain & and
with the middle fiber broken at ¢ = 0 can be found using eqn (8). The shear stresses in the
matrix involve relative fiber displacements, and thus, arc unaffected. The length of the zone
affected by unloading is stilt given by cqn (60). The fiber strains, fiber forces and fiber
displacements are found to be

o, t) = e[l + H ()], (70)
&(x ) =1:l:l—(_{)fl'(r])J. (7
Po(x.1) = AE + H' (n)). (72)
Pi(x,0) = ’—'5’5[1— ?H'(n)]. (73)
¢ 2

o1 b

v(x, ) =00 L4 5 Qir{n— 5 [H(n)—H(0)] . (74)
aft

volx, 1) = &P ”l:l + ‘f] Q’,l’{,:l + f]H(n)—ry— fl’l(O)}. (75)

respectively.

Numerical solution. Except for the case of n = 1, numerical solution of eqns (57) and
(58) must be pursued as follows. Let

w=m-n, (76)

then eqn (57) can be rewritten as
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H"=H"“"'{:—:(H-'IH')] 0 € e (77)

Equation {77) is solved numerically to determine H and 54, (1. 7). where the notation (u. n)
indicates the value n,, obtained for each pair of material parameters. There are three
difficulties in the numerical calculations. First, a straightforward integration from the left
end of the interval of interest is precluded. since the value of Hy(u.n) = H(n=0) is
unknown. Second. even though H(#g..) =0 and H (n,..) = 0. the value of n,,, itself, s
unknown. and consequently the extent of the region over which the solution is nonzero is
unknown. Third. the values of all of the derivatives of H{n) can be shown to be zero when
n reaches n,,.. Consequently. .. is a particularly undesirable point to begin an attempt
at a numerical solution. Since H'(n = 0) = — |, the slope of H(n = 0) is fixed for all values
of 4 and n, and a general computational approach is developed as follows. Choose a pair
of 4 and n values, then use the shooting method to generate a numerical solution for H{»).
Basically, a positive candidate value of H,ischosen, and eqn (77) is integrated forward from
n = 0. This H, is checked by determining whether the boundary conditions H (#,,.) = 0 and
H' (Nmax) = 0 are simultaneously met at some value of n. [teration on H, continues until
the boundary conditions are met to some desired degree of accuracy. and that value is
denoted H (i, n). Iteration for cach pair of g and # results in values for Hy(u, n) o, (uon).
and profiles of H (i) and its derivatives.,

Figure 6 shows numecrical results for H, (i, n) plotied versus n for fixed values of . As
i becomes large, H, appears to tend towards 0.5 for alt 0 < n < 1. Also, at a fixed value of
i, as nincreases, so does H, (w0 n). This observation was useful in speeding up the Hy (g, 1)
scarch procedure, as it produced better initial guesses for the #,(u. 1) values, once #Hy (1, 0)
and Hy(p, 1) had been determined. Figure 7 shows numerical results for n,,(uon) as a
function of n using a log scale for the vertical axis. Note that the values for g, (i, 2) tend
toward 1, regardless of n, as g becomes large.

HQ{#,H)
1.2
1.1 9
1,04/
049\/‘
081
0.7’/
05‘//‘
05 T Y Y Y T
0.0 0.2 0.4 0.8 08 1.9 p
— y=1.001 —— ed
——— patf e i
—— =15 —— 18
— u=2 wing— P10

Fig. 6. Plot of H,(u.n} = H(n = 0) versus n, showing the lines for values of g between 1.001 and
10, Ho{p. 1} is a key factor in determining the displacements at the fiber break.
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e w11 —pee = §
—— i $.S e 1} = 10
—p—— i1 - 2 —r— 4 - 12
——— (& —— = 20
w——— L= — Yt - 5O

Fig. 7. Plots of perturbed distance fuctor #,,.,, versus o for values of g between 1.1 and 50, Note that
Nuas dpproaches | as g increases for all n.

Some insight into the behavior of the numerical solutions for H () is useful in eval-
uating Fig. 7. For relatively large values of g, n,., (i, n) is small, and the solutions for H(n)
look as though they will cross through the zero value that they are supposed to reach
tangentially at n,,,. Seemingly at the last instant, they curve sharply and “land” smoothly.
The range of 5 values over which the solutions for H(n) are near zero is quite small, and it
is easy to distinguish the actual “landing point”, or n,,,,. However, for small values of g,
the values of n,,,. (¢, n) are much larger and the approach of H to zero is more gradual, so
that the numerically obtained n,,,, is less accurate. As u becomes larger, however, the values
for nu. (1. n) are nearly straight lines when plotted linearly versus n. As a check on the
validity of the numerical iteration scheme, the calculated values of 5, (i = m, n = 1) were
compared with the values predicted for this by eqn (27) with excellent agreement.

Letting y = 7/fn.x. Fig. 8 shows a plot of H(ym..) versus y forn = 0.5 and u = 1.001,
2,4, 10 and o0. The displacements are related to H(yn..,) by eqns (65) and (66). H(0) and
the appropriate valuc for n,,, can be obtained from Figs 6 and 7. For n = | the cor-
responding results were given in Fig. 5, and a plot of H{yn,,.,) for n = 0 is very similar to
that in Fig. 8.

Figurc 9 shows a plot of H'(yn,,,,) versus y for n = 0.5 and ¢ = 1.001, 2, 4, 10 and
0. The nondimensional fiber forces,

Pa(x, 1)

= H’ . 78
= H (V) (78)

B(y) =

or the normalized strain,
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H(Y max)
1.2 T n=05
— p=1001

1.0 1
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0.6

0.4
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0.0
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Fig. 8. Plots of #{(yy,..) versus v =g, forn =035 and = 1.001, 2. 4, 10 and -&. Note that
H{v ) = 0010, Where 4 () is nondimensional displacement.

H'(Y \max)

0.0

-0.2 1

-0.6 1

-0.8 1

Fig. 9. Plot of nondimensional fiber force P(v) = ' (¥0,,.) versus scaled distance v for n = 0.5
and ¢ = 1.001. 2,4, 0 and .
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H*(Y "max)
1.0 1

0.8 1

0.6 1

0.4

0.2

0.0
0.0

Fig. 10. Plot of H"(yn,,..) versus scaled distance v for = 0.5 and g = 1.001, 2,4, 10 and «.. Note
that 17 (31 = EO0) /M, where €( 1) is nondimensional shear stress.

= P(y). (79)

e ’:u(-l\:- 1

may be obtained directly from this figure using the appropriate value for n,,,, from Fig. 7.
For n = | corresponding results were given in Fig. 4, and a plot of #'(39m,) forn =10
turns out to be very similar to that in Fig. 9.

Figure 10 shows a plot of H” (3#,,..) versus y for n = 0 and g = 1.001, 2,4, 10 and 0.
The sheur stress may be obtained from these figures using eqn (59) and the appropriate
values of 1, from Fig. 7. For n = | the corresponding results were given in Fig. 3, and a
plot of H” (¥My,,) for n = 0 turns out to be similar to that in Fig. 10.

5. EXTENSION TO FIVE FIBER COMPOSITE

The previous analysis is extended to a composite with five fibers as shown in Fig. 11.
The description of the model is the sume as that of Section 2, except that there are now five
fibers dividing four equal bays of matrix. The fibers are denoted —2, — 1,0, | and 2, which
will also appear as subscripts on associated quantitics. The Young's modulus for Fiber 0
is Ey = Ef¢,. for Fibers —1 and | is E, and for Fibers —2 and 2 is E, = E/¢., where
0<¢y<land0 < ¢, £ 1. For the most part we concentrate on the case ¢, = 1.

Tension version. The five fibers arc loaded at x = + oo, by whatever forces are necessary
to produce a uniform strain, &. Thus P, = AEe/dpy, P, =P_,=AEe and P, =P _, =
AEe/¢,. At t =0, Fiber 0 is suddenly broken at x = 0. An unloaded zone develops at
the end of the broken fiber and the intact fibers arc overloaded along some time dependent
length. Due to symmetry, the displacements, strains and forces in Fiber & will be identical
to those in Fiber —k, for k& = 1, 2. The shear stress transmitted by the matrix between
Fibers k and k — | is denoted t(x, 1), and clearly 7, (x.¢) = —1_,(x.1). Due to symmetry,
we restrict our attention to Fibers 0, I and 2 and matrix Bays | and 2.

Equation (4) holds for Fiber 0 but with £ taken as £/¢, and 7 taken as t,, and

SAS 29:23-C
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Fiber 1

Fiber 0

Fiber -1

Fiber -2

Fig. 1. Configuration for the tension version of the five-fiber problem with fiber stiffnesscs
Ey,=E/¢py. E,=Eand E; = E/p,.

Dt (x.)~t3(x.)] = —EA »L'Lv—r) (80)

applies for Fiber 1. Also, for Fiber 2

EA [ ey, :)]
Ta(x, ) = -~ (81)

¢, D ax?
For i =1, 2 let y,(x, 1) be the matrix shear strain for Bay i so that

9y 1o
_"_%:_Q 70 (Lo n(x, ) =2,(x, 0], (82)

for two adjacent fibers. Thus, using the constitutive law, eqn (1), we obtain

0 EA nn 1 n— |
% [vo—vi] = dB[ 5p.D :I [vo,,,,]”'n[J:) (vo]™ ds] , (83)
for Bay 1, and for Bay 2 we obtain
0 EA mn " *t N n-1
(3; [vl - l'l] = (IB [a;'b_] [_ v!.,\'.r] n[ JO [—' v Z,rx] ds] ’ (84)

where we have assumed that vy, > 0 and ~v, . 2 0 for all x > 0 and ¢ > 0. Equations
(83) and (84) are the coupled equations written in terms of the fiber displacements. The
boundary and initial conditions are:

t(x>0,t=0) =ex

. ,
l’k,r(x—-oo,1>0)=£} for k=0.1and?2.

vi{x=0,t>0)=0, for i=1and2.
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to(x=0,t>0)=0.

1 1 1
(x=0,t>0 +———U:Jx=0.t>0=e[—+l+ :I 85
vilx ) . ( ) 0, Y (85)

The last equation here represents overall composite force equilibrium.

Compression version. In the compression version where no forces are applied at
x = + oo and compressive forces are suddenly applied to broken fiber ends at ¢ = 0, the
displacements u,(x, ) are"

u(x, t) = velx, ) —ex, for k=0,1and?2. (86)

We assume the fibers are initially unstrained and quiescent and Fiber 0 is already broken
at x = 0. Then at x = 0 and ¢ = 0, a compressive force P, = AE¢/¢, is suddenly applied to
Fiber 0, and a loaded zone develops. The governing equations for the compression problem
are given by eqns (83) and (84) with «, in place of r,, and the initial and boundary conditions
are:

Uu(x>01=0)=0

uk._‘(x—»oo.l>0)=0} for k=0,1and?2.
u(x=0,t>0)=0, for i=1land?2.
g (x=0,1>0)= —=¢
l €
(x=01>0+ —~uy (x=0,t>0) = -—. 87
i )+ g ) =550 (87)

Self-similar transformation. As with three fibers, a sclf-similar form is assumed for the
five-fiber problem. We define Q by

Qs = (dB)”"l:%f!]m. (88)

The similarity variable, n is defined in terms of Q; as

x
n= E:fﬂgzsr‘l : (89)
The solution for the fiber displacements is assumed to be of the form
h
u(x, t) = xe k'(;” . (90)

for k =0, +1 and +2. We further assume that there exist solutions to the governing
coupled equations subject to the existence of a finite value of n common to all fibers, called
Nmax» SUch that for all n > n,.,. all displacements and their derivatives are identically zero.
Following the manipulations in Sections 2 and 3, we derive the coupled governing equations
for h.(h) as

1/m
. z¢o[§] o — k1O =" [(hg — 1) = (o — K )], O

and
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—h" =¢:|:n:| (A, =hs]" "™ [(hy = h) —n(hy =R . (92)

From equilibrium of the composite we also have

l
hi(n) = —’l;}“h (m+ 7¢ hu(’l):] 93)
0

From these constructions, the boundary and initial conditions. eqns (87). become

Iy( = ) = (0 = Nog) = ha(n = Heud.
(N = Npae) = 0. k=0.land 2,
N = i) =0, k=0, land2.
hoin =0 = —1, k=0.land2,
g =0)+h(n=0)/p, = 1/(2¢,). (%94)
Muatrix shear stresses. From eqns (4), (80) and (81) the matrix shear stresses can be

written in terms of the functions /() and their derivatives, For convenience in plotting,
we let nondimensional shear stresses be defined as

(/)“D'lmu (, f

fl(,") = A “Q
= R 10 (KM (95)
for Bay | and
D
f:(.l') =(b_ ."nm\l:“/! |)Q ’r, X, ,)
liA
= ""ln;n/'lé()"lumx) (96)

for Bay 2. The shear stresses are readily obtained from plots of /15 (39, ) and /5(yn,..) as
considered shortly.

Fiber displacements, forces and strains. From eqn (90) the fiber displacements may be
formulated tn nondimensional terms as

N (.Y, 1)

i(y) = LT I
max®s hl

hk(.",lm.n)v (()7)

nax

for k = 0. | and 2. The individual fiber forces and strains may be written in nondimensional
terms, using eqn (90), as

I)l)(‘) = t)“ I)()(\ ’) = hll(”’un\)-

- |
Py = pm Pl =MVt

R

Piy) = g P80 = ), (98)
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g(x.1)

() = = P(y) = h(3Nma). for i=1.2and3. (99)

Plots of Ay (3Mmad). A1 (3max) @and A5 (31, are considered shortly.

Plastic-like behavior for large m. It is interesting to examine the behavior of the
compression version as m — . As mincreases. the matrix material approaches the behavior
of a rigid, perfectly plastic material. A solution to the governing equations (91)-(94). is
fairly straightforward using polynomial forms for A (n) and recognizing that Aa(n) = 2,
and A%(n) = Co, for some negative constant C [see Mason (1990)]. It is found that
Nmax = 1/(264) and

. |
ho(n) = don —”+[8b (d’ +l) 4, :|

5 . |
hmy =h(n) = ;(~ A")[—'I“-G- ‘ITII]. (100)

0

for 0 €/ € Npue- The nondimensional fiber forces and strains of eqns (98) and (99) are
lincar in 5 according to

ho(n) = 2un—1,

LT
W) = Ih(y) = Z(b+| [M —r]]. (101)

Thus for the case of rigid perfectly plastic matrix (i — ), the displacements and strains
in Fibers 1 and 2 are identical, regardless of their relative stiffnesses. When ¢ = ¢, =
all five fibers have equal stiffness, £, From egns (95) (101) we obtain the following results
The nondimensional matrix shear stresses are

Ty =1, (102)
t(y) = &, (103)

where i1 = .. OF X = 1'X .- The nondimensional fiber forces and strains are
Po(y) = y—1, (104)
By = By(y) = 1=y, (105)

and the nondimensional fiber displacements are

() = =+ (106)
0 (y) =t () = — b+ b (107)
Numerical results for g = ¢, = 1. A shooting mcthod algorithm has been developed
to solve the governing equations (91)-(94) for the casc ¢, = ¢, = | (cqual fiber stifTness).
As in Scction 4, the results are given in terms of u = m+n and n. The region, 0 € 5 < s
over which the functions /i, (1), & = 0, 1 and 2, are defined and their derivatives are nonzero,
is of undetermined length. At the end of the interval n,,,,. all derivatives of the i, (1) are
identically zero, and l1g(max) = /11 (max) = M2 (fmae)- In this problem, iteration takes place

on values for two boundary conditions, /,(y = 0) and /', (y = 0), which must be determined
for each set of material parameters u and n. For each iteration. the successive choices of
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hy(n = 0) and A\ (n = 0) are tested for “goodness” by determining whether the conditions
for n... are simultaneously satisfied for all functions A.() at some point n. That value of
n is denoted n,,.(u. n), and the corresponding values of the Fiber 0 displacement and the
Fiber 1 strain at n = 0 are denoted 4§ (4, n) and A’ (u. n). respectively.

The numerical iteration procedure was carried out for values of u between 1.25 and 6,
and values of n between 0.01 and 0.99. Although the solutions for the A,(n) are quite smooth
functions, it was necessary to determine the initial conditions to within 10~ in order to
satisfy the boundary conditions at n,,,. Even so, the accurate determination of n,,,, was
difficult for larger values of p.

Figures 12 and 13 are plots of the numerical results for 4§ (4. n) and & (u, n) respectively,
which are useful for determining the end displacements for Fiber 0 and neighboring strain
induced in Fiber 1. From eqn (100), as m — ¢ and u — = the values for A%(u.n) and
A (i, n) approach 5/16 and 1/4 respectively since ¢ = ¢ = |. The numerical results plotted
in these figures approach that limit. Figure 13 indicates that the increase in strain on the
flanking fibers depends primarily on the value of u = mn rather than on n. For u near one
the neighboring fiber bears most of the overload but this diminishes to equal sharing among
all four flanking fibers as u increases.

Figure 14 is a plot of n,,,, versus n. As m — 2 and y — o, the limiting value of n,,,,
was determined earlier to be [/2. Note that fairly large values of 1 are needed to approach
this limit.

Figurc 15 shows plots of the functions Ay (¥7max). #1 (3max) and A3(37 4, ) versus y for
it = 4 and n = 0.7. The nondimensional fiber displacements, as defined in eqn (97), may be
obtained from these plots by scaling with the value of ,,, from Fig. 14,

Figure 16 shows plots of Iy(3max)s A1 (3 Mman) and A3(3Mma) versus p for u = 4 and
n = 0.7. These curves are the nondimensional fiber forces and strains as defined in cqns
(98) and (99). Notc that the strain in Fiber 2 is actually greater than the strain in Fiber |
for larger 3, so that the outside fibers carry more of the excess load from the broken fiber,
until the end of the overload zone is reached.

hg* (u,n)

1.0

0.8 1

0.6 1

041

0.2 — ™ v — \

Fig. 12. Plot of numerical results for Fiber 0 displacement factor h§(u, n) versus n for various .
The limiting case of yu — o0 is also shown.
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Fig. 13. Plot of numerical results for Fiber | strain factor & (s, n) versus n for various u. The limiting
case of g — 0 is ulso shown,

Figure 17 shows plots of the functions Ay (Jfmax)s A1 (Wmax) a0d A3 (YNmax) versus y for
u# =4 and n = 0.7. The nondimensional shear stresses as given in eqn (95) may be obtain
from these curves by scaling with the appropriate value of n,,,, from Fig. 14.

Recovering the tension problem results. 1t is now relatively straightforward to recon-
struct the results of the tension version from those of the compression version. As was the
case earlier, the shear stresses are identical for both problems. For the displacements we
have

XE
ve(x, 1) = Fhk(']) +x¢

= &' P Q3 h () +, (108)

and for the fiber strains g,(x, t) we have

due(x, 1) _ Ju(x, 1) +e
ox  ox

= e[k (n) + 1). (109)

&(x, 1) =

Thus the fiber forces are

- EA
mmo=$fmmwn,

Pi(x, 1) = EAg[h\(n) + 1], (110)
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N max (.0)

0.0 —— T T -— —

Fig. 14, Plot of numerical resalts for perturbed distance factor g, (g n) versas o for various g
Lines through the data are cubic tits, The limit for g — -« s also shown.

hgQ, ht, h2 for u=4, n=.7
[+X ]
054 @ hO(ped ne.7)
< h{petnae?)
- h2(juwd N=
0.4
0.3
0.24
0.1
0.0 T Y T T T Yy
0.0 0.2 0.4 06 08 1.0

Fig. 5. Plots of numerical results tor Ag(3 ... 00,0 and Ay(vna,. ). for =3, n = 0.7. When
divided by 1., these are the nondimensional fiber displicements and the curves are typical of the
general curve shapes for ditferent g and # pairs.
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WO, h1°, h2 for uad, =7
0s
0.0
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- b0 (=t 7)
o= N)'(ped Ne.7)
= NZ(j=d.Ne.7)
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Fig. 16. Plots of numerical results toe AL(yn. ) B (00,.,,) and 2y(yn,,,), for =4 and n = 0.7.
These are nondimensional fiber forces and the curves are typical of the general curve shapes for
different g and » pairs.

-~

Pyx.1) = Lrﬁ[ll'z(n)-f 1. (1

These quantities are all casily visualized from Figs 15-17.

6. CONCLUSIONS

The creep behavior of the matrix in shear has the following important implications on
the time behavior of the stress fields near a fiber break.

(1) The overload region on the intact fibers grows in time in a self-similar way and
typically has a finite extent beyond which there is no disturbunce. The shape of this overload
profile is roughly triangular.

(2) The eflective load transfer length grows in time ¢ as """, where n and m are
respectively the exponents for time and stress level in the matrix constitutive law.

(3) The effective load transfer length grows with the composite strain level ¢ in pro-
portion to g™~ itmn e b,

(4) The displaccment of the broken fiber end grows as 27"+ Y and o™+ 1,

(5) The fraction of the overload shifted from the broken fiber to adjacent and sub-
adjacent fibers, respectively, depends on the value of m and n and is not fixed as in the case
of lincar viscoelasticity.

An indentation experiment may be devised whereby a strain ¢ is imposed on the end
of a broken fiber flanked by two fibers of much larger stiffness 4E. The theory here may
be adapted, and by measuring the time growth of the end displacement and its dependence
on g, the exponents m and n may be estimated.
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ho”, h17, h2" for p=4, n=.7
1.0
0.0
1.0 T u T ~f Lo y
0.00 0.20 0.40 0.60 0.80 1.00

Fig. 17, Plots of numerical results fot (v 1 (Mna) and #5300 for g =4 and 1 = 0.7.

When multiplied by #,,.,, the first and last are the nondimensional shear stresses in the Matrix 8Bays

1 and 2 respectively, and the curves are typical of the general curve shapes for different goand n
pairs.
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